479 research outputs found

    Manifestations of projection-induced memory: General theory and the tilted single file.

    Get PDF
    Over the years the field of non-Markovian stochastic processes and anomalous diffusion evolved from a specialized topic to mainstream theory, which transgressed the realms of physics to chemistry, biology and ecology. Numerous phenomenological approaches emerged, which can more or less successfully reproduce or account for experimental observations in condensed matter, biological and/or single-particle systems. However, as far as their predictions are concerned these approaches are not unique, often build on conceptually orthogonal ideas, and are typically employed on an ad hoc basis. It therefore seems timely and desirable to establish a systematic, mathematically unifying and clean approach starting from more fine-grained principles. Here we analyze projection-induced ergodic non-Markovian dynamics, both reversible as well as irreversible, using spectral theory. We investigate dynamical correlations between histories of projected and latent observables that give rise to memory in projected dynamics, and rigorously establish conditions under which projected dynamics is Markovian or renewal. A systematic metric is proposed for quantifying the degree of non-Markovianity. As a simple, illustrative but non-trivial example we study single file diffusion in a tilted box, which, for the first time, we solve exactly using the coordinate Bethe ansatz. Our results provide a solid foundation for a deeper and more systematic analysis of projection-induced non-Markovian dynamics and anomalous diffusion

    BetheSF: Efficient computation of the exact tagged-particle propagator in single-file systems via the Bethe eigenspectrum

    No full text
    Single-file diffusion is a paradigm for strongly correlated classical stochastic many-body dynamics and has widespread applications in soft condensed matter and biophysics. However, exact results for single-file systems are sparse and limited to the simplest scenarios. We present an algorithm for computing the non-Markovian time-dependent conditional probability density function of a tagged-particle in a single-file of particles diffusing in a confining external potential. The algorithm implements an eigenexpansion of the full interacting many-body problem obtained by means of the coordinate Bethe ansatz. While formally exact, the Bethe eigenspectrum involves the generation and evaluation of permutations, which becomes unfeasible for single-files with an increasing number of particles . Here we exploit the underlying exchange symmetries between the particles to the left and to the right of the tagged-particle and show that it is possible to reduce the complexity of the algorithm from the worst case scenario down to . A C++ code to calculate the non-Markovian probability density function using this algorithm is provided. Solutions for simple model potentials are readily implemented including single-file diffusion in a flat and a ‘tilted’ box, as well as in a parabolic potential. Notably, the program allows for implementations of solutions in arbitrary external potentials under the condition that the user can supply solutions to the respective single-particle eigenspectra

    Faster uphill relaxation in thermodynamically equidistant temperature quenches

    No full text
    We uncover an unforeseen asymmetry in relaxation: for a pair of thermodynamically equidistant temperature quenches, one from a lower and the other from a higher temperature, the relaxation at the ambient temperature is faster in the case of the former. We demonstrate this finding on hand of two exactly solvable many-body systems relevant in the context of single-molecule and tracer-particle dynamics. We prove that near stable minima and for all quadratic energy landscapes it is a general phenomenon that also exists in a class of non-Markovian observables probed in single-molecule and particle-tracking experiments. The asymmetry is a general feature of reversible overdamped diffusive systems with smooth single-well potentials and occurs in multiwell landscapes when quenches disturb predominantly intrawell equilibria. Our findings may be relevant for the optimization of stochastic heat engines

    Toolbox for quantifying memory in dynamics along reaction coordinates

    Get PDF
    Memory effects in time series of experimental observables are ubiquitous, have important consequences for the interpretation of kinetic data, and may even affect the function of biomolecular nanomachines such as enzymes. Here we propose a set of complementary methods for quantifying conclusively the magnitude and duration of memory in a time series of a reaction coordinate. The toolbox is general, robust, easy to use, and does not rely on any underlying microscopic model. As a proof of concept we apply it to the analysis of memory in the dynamics of the end-to-end distance of the analytically solvable Rouse-polymer model, an experimental time series of extensions of a single DNA hairpin measured by optical tweezers, and the fraction of native contacts in a small protein probed by atomistic molecular dynamics simulations

    BetheSF V2: 3-point propagator and additional external potentials

    Get PDF
    In a recent paper (Comput. Phys. Commun. 258 (2021) 107569) we obtained exactly the tagged-particle propagator in a single-file with N particels diffusing in a generic confining potential via the coordinate Bethe-Ansatz. A naïve implementation of this solution requires a non-polynomial algorithm. To speed-up the computation we implemented a more efficient algorithm that exploits the particle exchange-symmetry. In this new version we expand the code-base to allow for the computation of the three point Green's function. The latter is required e.g. in the analysis of the breaking of time-translational invariance. In addition we include the support for two canonical potentials of general interest: one presenting an energy barrier and one featuring an asymmetric potential landscape

    On correlations and fluctuations of time-averaged densities and currents with general time-dependence

    Get PDF
    We present technical results required for the description and understand- ing of correlations and fluctuations of the empirical density and current as well as diverse time-integrated and time-averaged thermodynamic currents of diffusion pro- cesses with a general time dependence on all time scales. In particular, we generalize the results from arXiv:2105.10483 (Phys. Rev. Lett. , article in press), arXiv:2204.06553 (Phys. Rev. Research, article in press), and arXiv:2206.04034 to additive functionals with explicit time dependence and transient or non-ergodic overdamped diffusion. As an illustration we apply the results to two-dimensional harmonically confined over- damped diffusion in a rotational flow evolving from a non-stationary initial distribution

    Feynman-Kac theory of time-integrated functionals: Itô versus functional calculus

    Get PDF
    The fluctuations of dynamical functionals such as the empirical density and current as well as heat, work and generalized currents in stochastic thermodynamics are often studied within the Feynman-Kac tilting formalism, which in the physics literature is typically derived by some form of Kramers-Moyal expansion. Here we derive the Feynman-Kac theory for general additive dynamical functionals directly via Itô calculus and via functional calculus, where the latter approach in fact appears to be new. Using Dyson series we then independently recapitulate recent results on steady-state (co)variances of general additive dynamical functionals derived in arXiv:2105.10483 and arXiv:2204.06553 directly from Itô calculus avoiding any tilting. We hope for our work to put the different approaches to stochastic functionals employed in the field on a common footing

    Direct Route to Thermodynamic Uncertainty Relations

    Get PDF
    Thermodynamic uncertainty relations (TURs) bound the dissipation in non-equilibrium systems from below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inherent property of overdamped stochastic equations of motion. By including current-density correlations we, moreover, derive a new sharpened TUR for transient dynamics. Our arguably simplest and most direct proof allows us to systematically determine conditions under which the different TURs saturate and thus allows for a more accurate thermodynamic inference

    Universal proximity effect in target search kinetics in the few-encounter limit.

    No full text
    When does a diffusing particle reach its target for the first time? This first-passage time (FPT) problem is central to the kinetics of molecular reactions in chemistry and molecular biology. Here, we explain the behavior of smooth FPT densities, for which all moments are finite, and demonstrate universal yet generally non-Poissonian long-time asymptotics for a broad variety of transport processes. While Poisson-like asymptotics arise generically in the presence of an effective repulsion in the immediate vicinity of the target, a time-scale separation between direct and reflected indirect trajectories gives rise to a universal proximity effect: Direct paths, heading more or less straight from the point of release to the target, become typical and focused, with a narrow spread of the corresponding first-passage times. Conversely, statistically dominant indirect paths exploring the entire system tend to be massively dissimilar. The initial distance to the target particularly impacts gene regulatory or competitive stochastic processes, for which few binding events often determine the regulatory outcome. The proximity effect is independent of details of the transport, highlighting the robust character of the FPT features uncovered here

    Coarse graining empirical densities and currents in continuous-space steady states

    Get PDF
    We present the conceptual and technical background required to describe and understand the correlations and fluctuations of the empirical density and current of steady-state diffusion processes on all time scales — observables central to statistical mechanics and thermodynamics on the level of individual trajectories. We focus on the important and non-trivial effect of a spatial coarse graining. Making use of a generalized time-reversal symmetry we provide deeper insight about the physical meaning of fluctuations of the coarse-grained empirical density and current, and explain why a systematic variation of the coarse-graining scale offers an efficient method to infer bounds on a system’s dissipation. Moreover, we discuss emerging symmetries in the statistics of the empirical density and current, and the statistics in the large deviations regime. More broadly our work promotes the application of stochastic calculus as a powerful direct alternative to Feynman-Kac theory and path-integral methods
    • …
    corecore